🕛 Mencari Sisi Segitiga Dengan Sudut

Berangkatdari informasi tersebut, demikian didapat persamaan α + β + 90 ° = 180 °. Ingat: Pada segitiga siku-siku, salah satu sudutnya adalah 90 °. Sehingga hubungan antara kedua sudut tersebut yaitu: Artinya, sin α = sin (90 ° - β) = cos β, begitu juga sebaliknya cos (90 ° - β) = sin β. Bagaimanacara mencari panjang sisi segitiga 30 60 90? Rasio Segitiga 30-60-90. Sisi pendek (berlawanan dengan sudut 30 derajat) = x. Sisi miring (berlawanan dengan sudut 90 derajat) = 2x. Setiap segitiga memiliki tiga sisi dan tiga sudut, beberapa di antaranya mungkin sama. Sisi-sisi sebuah segitiga diberi nama khusus dalam kasus segitiga MenghitungPanjang Sisi Segitiga Jika Diketahui Besar Sudutnya - Jendela Ilmu. Rumus Perbandingan Sisi-Sisi Pada Segitiga Siku-Siku dengan Sudut Khusus. Diketahui segitiga ABC siku-siku di B. Jika sudut A= 30 derajat dan BC= 6 cm, Panjang AC = cm - YouTube. Rumus dan Contoh Soal Luas dan Keliling Segitiga. Artikelkali ini juga mengulas berkenaan Cara Menghitung Sudut Segitiga - Matematika AFKGG.COM, Menghitung Sudut pada segitiga garis sejajar-Request - YouTube, Rumus Mencari Sudut Segitiga Jika Diketahui Panjang Sisi dan juga Menghitung Luas Tembereng Jika Sudut Pusat Diketahui, Rumus Mencari Sudut Segitiga Jika Diketahui Panjang Sisi DaftarIsi :1 Menentukan Panjang Jari-Jari Lingkaran Dalam Segitiga Sama Sisi2 Mempelajari Tentang Aturan Sinus Pada Segitiga - Bangku Sekolah3 Mencari Luas Segitiga Dengan Sinus4 Cara Menghitung Besar Salah Satu Sudut Segitiga | Idschool5 Cara Membuat Rak Bunga Dari Kayu Termudah. Bisa Dicoba Di Rumah!6 Rumus Phytagoras Limas Segi Empat - Edukasi.Lif.co.id7 Kesebangunan Pada Segitiga Karenasegitiga tersebut adalah sama kaki, maka sisi miring lainnya memiliki panjang yang sama, yaitu 6 cm. K = sisi1 + sisi2 + sisi3. = 4 + 6 + 6. = 16 cm. 3. Suatu segitiga siku siku memiliki sisi a, b, c berturut-turut 5, 6, dan 7. Tentukan keliling dari segitiga tersebut! Pembahasan: K = a + b + c. Segitigasama sisi memiliki tiga sisi yang sama panjang dan sudut yang sama besar yaitu 60 o. Segi tiga siku-siku, memiliki salah satu sudut yaitu 90 o dan dua titik sudut lainnya yaitu 45 o. Segi tiga tumpul memiliki satu sudut tumpul di antara 90 o sampai 180 o. Segitiga lancip dengan ketiga sudutnya membentuk sudut lancip yaitu di antara 0 o Mencarisudut segitiga sama sisi. Sebuah segitiga sama sisi memiliki tiga sisi yang sama panjang dan tiga sudut yang sama besar. Masing-masing sisinya biasanya ditandai dengan dua garis pendek di tengah-tengah. Karena ketiga sudutnya sama besar, itu berarti semua sudutnya berukuran 60 derajat, karena 180/3 = 60. SegitigaSama Sisi. oleh Tiyarman Gulo, S.H. Penjelasan apa itu segitiga sama sisi mulai dari pengertian, rumus, sudut, sifat, ciri-ciri, cara menghitung, simetri putar, dan contoh soal. Segitiga sama sisi adalah jenis segitiga yang ketiga sisinya memiliki panjang yang sama. Karena panjang sisinya sama, ukuran setiap titik pada segitiga Untuklingkaran, kalikan jari-jari persegi dengan 3.14 (pi). Bagaimana cara mencari luas permukaan prisma tidak beraturan? Berapa luas permukaan piramida segitiga? Untuk mencari luas permukaan piramida segitiga biasa, kita menggunakan rumus SA = A + (3/2)bh, di mana A = luas alas piramida, b = alas salah satu sisi, dan h = tinggi salah satu sisi. MenentukanSisi Dan Sudut Bangun Datar. Contoh Soal Menentukan Sisi Dan Sudut Bangun Datar - Bangun datar adalah bangun dua dimensi yang dibatasi oleh sisi dan sudut. Diantara jenis bangun datar yaitu persegi, persegi panjang, segitiga, trapesium, jajar genjang, belah ketupat, layang-layang, serta lingkaran. Top7: Rumus Segitiga Sama Kaki dan Sama Sisi - Luas dan Keliling; Top 8: Perbandingan Panjang Sisi-Sisi pada Segitiga Siku-Siku Khusus; Top 9: Rumus Pythagoras Segitiga Siku-siku dan Contoh Soalnya - CNN Indonesia; Top 1: CARA MENCARI PANJANG SISI SEGITIGA SIKU; Top 2: Rumus Panjang sisi segitiga - Brainly.co.id; Top 3: Rumus Pythagoras 6eJQQO6. Sebelum belajar mengenai trigonometri, kita selalu "menangani" baik itu garis dan sudut sebagai sesuatu yang keduanya berhubungan karena sudut dibentuk oleh garis, tapi secara perhitungan selalu dilakukan secara ini kita bakal lihat bagaimana keduanya saling trigonometri itu mempelajari hubungan antara dua sisi dari segitiga dengan semua sudut pada sebuah pembahasan awal, dibatasi dahulu pemaparannya untuk segitiga siku-siku segitiga siku-siku di bawah ini, mempunyai panjang b pada sisi alasnya, kemudian panjangnya a untuk sisi tingginya, dan panjang c untuk sisi sisi segitiga tersebut memiliki julukannya tersendiri, yaituAdjacent Alas Tinggi Sisi miring maksud hubungan antar dua sisi dan sudut tersebut yakni seperti digunakan sisi a serta c, nah kedua sisi tersebut memiliki relasi terhadap sudut-sudut yang dibentuk oleh keduanya. Yaitu sudut α dan hanya pasangan kedua sisi itu saja, berlaku juga b dan a, serta b dan c. Dan tentunya dengan pasangan sudut berbeda TrigonometriTerdapat istilahnya masing-masing untuk setiap relasi dua sisi dengan sudut α beserta dua sisi mengapit suatu sudut di mana satu sisi membentuk sudut siku terhadap sisi lainnya, relasi tersebut dinamakan cosinus atau apabila dua sisi membentuk sudut di sebrang sisi yang membentuk siku terhadap sisi lainnya, relasi tersebut dinamakan sinus atau gak bingung dengan kalimat di atas, langsung aja ke definisi sebelumnya maka sangat jelas bahwa relasi antara sisi b dan c dengan sudut α merupakan sisi a dan c dengan sudut α merupakan kalian cari tahu apa relasi antara sisi b dan c dengan sudut β. Kemudian sisi a dan c dengan sudut juga relasi lainnya, yakni apabila dua sisi saling tegak lurus yaitu membentuk siku membentuk sudut, relasi tersebut dinamakan tangent atau adalah sisi a dan b dengan sudut &alpha. Atau bisa juga dibalik, tetapi hubungan sudutnya dengan β. Keduanya bergantung susunan tersebut dalam matematika dituliskan sebagai berikutSecara umum, jika dinyatakan dalam perbandingan istilah sisinya, rumus trigonometri yaituSin x = tinggi/ x = alas/ x = tinggi/ teman-teman ada yang bisa mengartikan gak, maksud dari ketiga rumus trigonometri di atas?Secara sederhana maknanya seperti ini, apabila ingin mengetahui panjang dua sisi, maka dapat diketahui sudut yang pun sebaliknya, apabila diketahui panjang salah satu sisi serta diketahui besar sudutnya, maka bisa dihitung juga panjang sisi bisa berlaku seperti itu? Alasannya sederhana, coba salah satu persamaannya diubah menjadi seperti iniInterval Nilai TrigonometriMungkin di antara tukang iseng ada yang bertanya mengenai pernyataan sebelumnya. Yaitu mengenai kenapa bisa ditentukan panjang suatu sisi berdasarkan informasi nilai fungsi trigonometri, seperti cosinus, sinus, serta lainnya selalu sama, alias tidak bergantung ukuran segitiganya?Tentu nilainya selalu sama, dan dapat dijelaskan melalui ilustrasi bahwa segitiga △ABO dan △CDO, meskipun memiliki panjang sisi yang berbeda namun besaran sudut yang dibentuk adalah sudut α tersebut tidak bergantung panjang sisi Mulai Dari -1 Hingga 1Hasil pemetaan sudut dari fungsi trigonometri untuk sin serta cos selalu berada di antara -1 hingga 1. Enggak lebih, juga gak bisa gitu? Jadi pada segitiga, dalam hal ini segitiga siku-siku. bagian miringnya selalu lebih panjang ketimbang untuk fungsi sinus, saat sudutnya membentuk 90°, kondisi ini menyebabkan seolah-olah bagian depannya sejajar dengan bagian untuk fungsi cosinusnya, bagian alasnya seakan-akan tidak mempunyai panjang, nilainya mendekati nol. Makanya sin 90° = 1, sedangkan cos 90° = situasi untuk fungsi tangent, sebab rentang nilainya antara -∞ hingga -∞.Mengapa demikian, dikarenakan ada peluang penyebutnya sisi alasnya sangat kecil sekali, sampai mendekati Sudut Lancip dan Siku-SikuSampai sini saya harap kalian sudah paham manfaat mendasar dari trigonometri ini. Nah, selanjutnya yang perlu dipertimbangkan yaitu, bagaimana nasib sudut yang lebih besar dari 90°.Mari amati kembali sistem koordinat kartesius di bawah TrigonometriUntuk segitiga yang dibentuk oleh dua sisi bernilai positif sisinya berada di sumbu positif maka besar perputarannya 90°, nilai fungsi trigonometrinya belum tentu sama ketika sudutnya lebih dari 180°.Kesimpulan yang bisa digali yaitu, meskipun sudutnya > 90° besaran-besaran trigonometri masih sama. Karena prinsipnya sama dengan ilustrasi segitiga saja tandanya berbeda-beda, sebab ada satu sisi menduduki daerah negatif pada salah satu sumbu, dan ada juga yang sudut-sudut lainnya, penentuan kapan negatif dan positifnya bisa dilihat sedang di sumbu mana sisi Untuk sisi miring selalu bernilai positif, karena bentuk akar yang selalu Sin Cos TanSecara menyeluruh, tanda dari nilai-nilai trigonometri terhadap letak kuadrannya disimpulkan sebagai berikutSin + Kuadran I, + Kuadran II, - Kuadran III, - Kuadran IVCos + Kuadran I, - Kuadran II, - Kuadran III, + Kuadran IVTan + Kuadran I, - Kuadran II, + Kuadran III, - Kuadran IVKalau diperhatikan kembali segitiga di awal, ada kesamaan antara sin α dengan cos β, yakni sama-sama a/ juga antara cos α dengan sin β yakni sama-sama b/ artinya ada relasi antara sin dan cos tersebut? Jawabannya ada, dan hubungan tersebut secara gampang bisa ditemukan wahai tukang iseng!Langkah pertama, kita cuman butuh mencari hubungan sudut α dengan diketahui bahwa, total semua sudut di dalam segitiga berjumlah 180°.Berangkat dari informasi tersebut, demikian didapat persamaan α + β + 90° = 180°.Ingat Pada segitiga siku-siku, salah satu sudutnya adalah 90°. Sehingga hubungan antara kedua sudut tersebut yaituArtinya, sin α = sin 90° - β = cos β, begitu juga sebaliknya cos 90° - β = sin yang bingung kenapa tiba-tiba gitu, oke kita pelan-pelan aja. Coba cermati perbandingan sisi antara sin α dengan cos sama-sama a/c, ya gak? Mengingat α = 90° - β, secara gak langsung telah ditunjukkan kalau sin 90° - β = cos untuk hubungan keduanya, yaitu dengan tan, diekspresikan melalui persamaan berikutApa benar seperti itu rumusnya? Oke, sekarang cek aja langsung, dengan mensubstitusikan dengan panjang sisinya, sehingga menjadiRumus Fungsi Trigonometri Terhadap Fungsi LainnyaOleh karena itu, dapat diringkas relasi antar nilai trigonometri seperti berikutsin x = cos 90° - xcos x = sin 90° - xtan x = sin x/cos xBagaimana jika menemui segitiga sembarang? Itu mungkin pertanyaan dibenak kalian, karena rumus-rumus trigonometri sebelumnya diterapkan khusus pada segitiga tenang aja teman-teman, ada beberapa sifat trigonometri yang bisa diterapkan untuk segitiga SinusCoba lihat pada segitiga sembarang pada gambar di atas. Akan ditambahkan suatu garis bantu yang tegak lurus terhadap salah satu sisi, supaya prinsip dasar trigonometrinya bisa garis bantu pertama yaitu t1, persamaan-persamaan trigonometrinya adalahDari kedua persamaan tersebut, ada variabel yang sama yaitu t1. Dengan mensubstitusikannya, maka didapatkan hubungan antara sisi dan sudutnya sebagai berikutSelanjutnya, gunakan garis bantu kedua yaitu t2, persamaan trigonometrinya yaituDari dua persamaan ini, diperoleh hubungan antar sisi dan sudutnya sebagai berikutNah, dari kedua persamaan apabila digabungkan maka akan menjadi rumus aturan sinus yaituAturan CosinusKalau tadi mampu diketahui panjang sisi menggunakan dua informasi sudut dan satu sisi mencari besar sudut berdasarkan dua informasi panjang sisi dan satu sudut cosinus ini agak berbeda sedikit, akan dicari besar suatu sudut menggunakan 3 informasi berupa panjang sini akan dibutuhkan dua garis bantu yaitu t1 beserta x. Sebagai contoh, kita bakal cari tahu sudut α, bakal dimanfaatkan dulu garis gunakan teorema Pythagoras untuk mengetahui hubungan tiga sisi berikutSatu lagi, pakai teorema yang sama untuk tiga sisi yaitu a, t1, selanjutnya, substitusikan nilai-nilai yang telah diketahui barusan. Demikian didapat rumus aturan cosinusIdentitas PythagorasKali ini kita balik lagi ke segitiga siku-siku yang pertama. Berdasarkan teorema Pythagoras, hubungan antara ketiga sisi tersebut secara matematis dituliskan sebagai-Sisi a serta b sendiri bisa dituliskan dalam bentuk trigonometri sebagai substitusikan persamaan di atas, maka akan didapat identitas pertama yaituUntuk identitas lainnya, bisa dipakai kembali persamaan di atas. Identitas kedua coba kalikan 1/cos2 α pada kedua ruas, sehingga menjadiIdentitas ketiga, silahkan untuk mengalikannya dengan 1/sin2 terdapat dua nilai sudut lalu dijumlahkan, nilai trigonometrinya mampu dihitung secara terpisah masing-masing.Maksudnya, jika diketahui nilai trigonometri dari keduat sudut, maka bisa dimanfaatkan untuk menghitung penjumlahan serta terdapat sebuah titik sebut saja Px, y lalu dirotasikan sejauh β dari α, titik barunya berada di P'x', y'.Apabila mengacu rumus rotasi, titik barunya terletak di x' = xcos β - ysin β dan y' = xsin β + ycos βDengan menuliskan setiap komponen dalam bentuk panjangnya terhadap acuan putarnya menjadiDiperoleh rumus penjumlahan sudut dari fungsi trigonometriPada kondisi tertentu, yakni saat α = β rumusnya menjadiKalau tadi merupakan penjumlahan dua sudutnya, sekarang bakal ditunjukkan untuk penjumlahan dua fungsi jumlahkan bentuk sin α + β dengan sin α - β sehingga terdapat satu suku yang saling menjadi sin α + β + sin α - β = 2sin α cos x = α + β dan y = α - β, eliminasikan kedua persamaan tersebut sehingga didapat α = x + y/2 dan β = x - y/ variabel barunya, dan persamaan sebelumnya dituliskan sebagaiBanyak rumus trigonometri lainnya mampu diperoleh berdasarkan persamaan serta identitas sebelumnya. Kami rangkum rumus-rumus tersebut pada gambar berikut Blog Koma - Matematika SMP Sebelumnya kita telah mempelajari materi "Jenis-jenis dan Sifat-sifat Segitiga", pada artikel kali ini kita khusus membahas materi Sudut-sudut pada Segitiga. Untuk mempermudah, juga baca materi yang ada kaitannya dengan sudut-sudut yaitu "hubungan antar sudut". Jumlah ketiga Sudut pada Segitiga Perhatikan gambar segitiga ABC berikut, *. gambar b, pada sudut-sudut segitiga ABC dipotong berdasarkan garis k, l dan m sehingga terbentuk tiga potongan yang sudah diberi nomor seperti gambar b. *. dari ketiga potongan pada gambar b kemudian disatukan sedemikian terbentuk seperti gambar c, dimana ketiga bangun membentuk garis lurus. Artinya ketiga sudut segitiga jumlahnya $180^\circ$. Sehingga Jumlah ketiga sudut pada segitiga adalah 180$^\circ \, $ yaitu $ \angle A + \angle B + \angle C = 180^\circ $. Contoh 1. Diketahui pada $\Delta$PQR, besar $\angle$P =48$^\circ$ dan $\angle$Q = 72$^\circ$. Hitunglah besar $\angle$R. Penyelesaian *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle P + \angle Q + \angle R & = 180^\circ \\ 48^\circ + 72^\circ + \angle R & = 180^\circ \\ 120^\circ + \angle R & = 180^\circ \\ \angle R & = 180^\circ - 120^\circ \\ \angle R & = 60^\circ \end{align} $ Jadi, besar $ \angle R = 60^\circ $. 2. Perhatikan segitiga KLM berikut, Dari segitiga KLM di atas, tentukan nilai $ x \, $ dan besar semua sudut-sudut segitiganya. Penyelesaian *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle K + \angle L + \angle M & = 180^\circ \\ x + 2x + 3x & = 180^\circ \\ 6x & = 180^\circ \\ x & = \frac{180^\circ}{6} \\ x & = 30^\circ \end{align} $ sehingga nilai $ x = 30^\circ $. *. Menentukan besar sudut-sudut segitiganya $ \begin{align} \angle K & = x = 30^\circ \\ \angle L & = 2x = 2\times 30^\circ = 60^\circ \\ \angle M & = 3x = 3\times 30^\circ = 90^\circ \end{align} $ Jadi, besar $\angle $K, $\angle $L, dan $\angle $M berturut-turut adalah 30$^\circ$, 60$^\circ$, dan 90$^\circ$. 3.Pada $\Delta$ABC diketahui $\angle $A = 50$^\circ$. Jika B C = 2 3, tentukan besar $\angle $B dan $\angle $C. Penyelesaian *. Kita kalikan $a $ untuk perbandingan yang ada, $ \frac{B}{C} = \frac{2}{3} \rightarrow \frac{B}{C} = \frac{2a}{3a} $ artinya besar $ \angle B = 2a \, $ dan $ \angle C = 3a $. *. Menentukan nilai $ a $, $ \begin{align} \angle A + \angle B + \angle C & = 180^\circ \\ 50^\circ + 2a + 3a & = 180^\circ \\ 5a & = 130^\circ \\ a & = \frac{130^\circ}{5} = 26^\circ \end{align} $ *. Menentukan besar sudut B dan C dengan $ a = 26^\circ $ $ \begin{align} \angle B & = 2a = 2 \times 26^\circ = 52^\circ \\ \angle C & = 3a = 3 \times 26^\circ = 78^\circ \end{align} $ Jadi, besar $\angle $B, dan $\angle $C berturut-turut adalah 52$^\circ$, dan 78$^\circ$. Hubungan Panjang sisi dan Sudut pada Segitiga Perhatikan segitiga ABC berikut yang lengkap dengan panjang sisi-sisinya, $\clubsuit$ Ketidaksamaan Segitiga Pada setiap segitiga selalu berlaku bahwa jumlah dua buah sisinya selalu lebih panjang daripada sisi ketiga. Jika suatu segitiga memiliki sisi a, b, dan c maka berlaku salah satu dari ketidaksamaan berikut. i. $ a + b > c $ ii. $ a + c > b $ iii. $ b + c > a $ Ketidaksamaan tersebut disebut ketidaksamaan segitiga. $\clubsuit$ Hubungan Besar Sudut dan Panjang Sisi Suatu Segitiga Pada setiap segitiga berlaku sudut terbesar terletak berhadapan dengan sisi terpanjang, sedangkan sudut terkecil terletak berhadapan dengan sisi terpendek. $\clubsuit$ Hubungan Sudut Dalam dan Sudut Luar Segitiga Besar sudut luar suatu segitiga sama dengan jumlah dua sudut dalam yang tidak berpelurus dengan sudut luar tersebut. Keterangan *. Pada segitiga ABC, $ \angle CBD \, $ adalah sudut luar segitiga ABC dan sudut dalamnya adalah sudut ABC, sudut ACB, dan sudut BAC. *. Dari hubungan sudut luar dan sudut dalam, kita peroleh persamaan $ \angle CBD = \angle BAC + \angle ACB $. Contoh 4. Berdasarkan gambar berikut, tentukan nilai $ x $ dan $ y $. gambar soal 4. Penyelesaian *. Jumlah sudut-sudut pada segitiga adalah $ 180^\circ$. $ \begin{align} 80^\circ + 60^\circ + x^\circ & = 180^\circ \\ 140^\circ + x^\circ & = 180^\circ \\ x^\circ & = 40^\circ \end{align} $ sehingga nilai $ x^\circ = 40^\circ $. *. Menentukan besar sudut $ y^\circ $ , ada dua cara yaitu Cara I $ x \, $ dan $ y \, $ berpelurus jumlahnya $ 180^\circ $. $ \begin{align} x^\circ + y^\circ & = 180^\circ \\ 40^\circ + y^\circ & = 180^\circ \\ y^\circ & = 140^\circ \end{align} $ Cara II Hubungan sudut luar dan sudut dalam, $ y \, $ adalah sudut luar, sehingga $ y = 80^\circ + 60^\circ = 140^\circ $. Jadi, besar sudut $ x^\circ = 40^\circ \, $ dan $ y^\circ = 140^\circ$. 5. Selidikilah, apakah panjang sisi-sisi berikut dapat dibuat sebuah segitiga. a. 3 cm, 6 cm, dan 8 cm b. 4 cm, 7 cm, dan 11 cm c. 5 cm, 8 cm, dan 14 cm d. 10 cm, 10 cm, dan 12 cm e. 6 cm, 9 cm, dan 16 cm Penyelesaian *. Kita cek berdasarkan ketidaksamaan segitiga. Panjang tiga sisi dapat membentuk sisi-sisi segitiga jika ketiga sisinya memenuhi ketidaksamaan segitiga. *. Agar kita tidak memeriksa ketiga sayarat, maka cukup cek untuk sisi terpanjang saja. a. 3 cm, 6 cm, dan 8 cm $ 3 + 6 = 9 > 8 \, $ memenuhi syarat ketidaksamaan segitiga. b. 4 cm, 7 cm, dan 11 cm $ 4 + 7 = 11 \not{>} 11 \, $ tidak memenuhi syarat ketidaksamaan segitiga. c. 5 cm, 8 cm, dan 14 cm $ 5 + 8 = 13 12 \, $ memenuhi syarat ketidaksamaan segitiga. e. 6 cm, 9 cm, dan 16 cm $ 6 + 9 = 15 < 16 \, $ tidak memenuhi syarat ketidaksamaan segitiga. Jadi, panjang sisi-sisi yang akan membentuk segitiga adalah bagian a dan d. 6. Diketahui sudut suatu segitiga PQR berbanding $\angle$P $\angle$Q $\angle$R = 9 5 4. Tentukan a. besar $\angle$P, $\angle$Q, dan $\angle$R; b. sisi yang terpanjang; c. sisi yang terpendek. Penyelesaian *. Untuk mempermudah pengerjaan, kita kalikan $ a $ pada perbandingannya, $ \angle P \angle Q \angle R = 9 5 4 \rightarrow \angle P \angle Q \angle R = 9a 5a 4a $ artinya besar $ \angle P = 9a , \, \angle Q = 5a , \, $ dan $ \angle R = 4a $. *. Jumlah ketiga sudut segitiga adalah $ 180^\circ$. $ \begin{align} \angle P + \angle Q + \angle R & = 180^\circ \\ 9a + 5a + 4a & = 180^\circ \\ 18a & = 180^\circ \\ a & = \frac{180^\circ}{18} \\ a & = 10^\circ \end{align} $ sehingga nilai $ a = 10^\circ $. a. Menentukan besar sudut-sudut segitiganya $ \begin{align} \angle P & = 9a = 9\times 10^\circ = 90^\circ \\ \angle Q & = 5a = 5\times 10^\circ = 50^\circ \\ \angle R & = 4a = 4\times 10^\circ = 40^\circ \end{align} $ b. Sisi terpanjang adalah sisi yang ada dihadapan sudut terbesar yaitu sudut P, sehingga sisi terpanjangnya adalah QR. c. Sisi terpendek adalah sisi yang ada dihadapan sudut terkecil yaitu sudut R, sehingga sisi terpendeknya adalah PQ. 7. Perhatikan gambar berikut, Pada gambar tersebut $\angle B_1 = \angle B_2, \, \angle C_3 =\angle C_4, \, \angle A = 70^\circ$, dan $\angle B = 60^\circ$. Hitunglah a. besar $\angle C_3 + \angle C_4$; b. besar $\angle B_2$; c. besar $\angle D$. Penyelesaian a. Perhatikan segitiga ABC, sudut $C_3 + C_4 \, $ adalah sudut luar dari segitiga ABC, sehingga $ \angle C_3 + \angle C_4 = \angle B + \angle A = 60^\circ + 70^\circ = 130^\circ $. Jadi, nilai $ \angle C_3 + \angle C_4 = 130^\circ $. b. Sudut $ B_1 = B_2 \, $ artinya $ \angle B_2 = \frac{1}{2} \angle B = \frac{1}{2} \times 60^\circ = 30^\circ $. c. Perhatikan segitiga ABC, $ \angle C = 180^\circ - \angle B + \angle C = 180^\circ - 130^\circ = 50^\circ $. *. Pada bagian a, sudut $ C_3 = C_4 \, $ artinya $ \angle C_3 = \frac{1}{2} \times 130^\circ = 65^\circ $. *. Perhatikan segitiga BCD, $ \angle C = 50^\circ + 65^\circ = 115^\circ $ . $ \angle B = \angle B_2 = 30^\circ $ . *. Menentukan besar sudut D, $ \begin{align} \angle B + \angle C + \angle D & = 180^\circ \\ 30^\circ + 115^\circ + \angle D & = 180^\circ \\ 145^\circ + \angle D & = 180^\circ \\ \angle D & = 35^\circ \end{align} $ Jadi, besar $ \angle D = 35^\circ $ . Hai Quipperian, saat di SD kamu sudah dikenalkan dengan macam-macam segitiga, kan? Salah satu segitiga yang mungkin kamu kenal adalah segitiga siku-siku. Segitiga ini terbilang unik karena memiliki hipotenusa dengan satu sisi tegak dan satu sisi mendatarnya. Tahukah kamu jika perbandingan sisi-sisi segitiga siku-siku ini menghasilkan suatu istilah yang disebut perbandingan trigonometri? Memangnya, apa sih yang dimaksud perbandingan trigonometri itu? Daripada penasaran, yuk simak selengkapnya! Pengertian Perbandingan Trigonometri Perbandingan trigonometri adalah perbandingan panjang sisi-sisi pada segitiga siku-siku. Segitiga ini memiliki tiga sisi, yaitu hipotenusa sisi miring, sisi tegak vertikal, dan sisi mendatar horizontal. Letak sisi tegak dan sisi mendatarnya saling tegak lurus, sehingga sudut yang dibentuk oleh keduanya tepat 90o. Itulah mengapa, sudut ini disebut sebagai sudut siku-siku. Untuk lebih jelasnya, perhatikan gambar berikut. Dari gambar di atas, sudut siku-siku dibentuk oleh perpotongan antara sisi AB dan BC. Sisi AB disebut juga sisi tegak, sisi BC disebut sisi mendatar, dan tepat di depan sudut siku-siku terdapat sisi miring BC. Sisi miring selalu lebih panjang dari kedua sisi lainnya. Rumus Perbandingan Trigonometri Rumus perbandingan trigonometri diperoleh dari perbandingan sisi-sisi segitiga siku-siku seperti berikut. Perbandingan Trigonometri Sinus Sinus α merupakan perbandingan antara sisi depan sudut α AB dan dan sisi miring AC. Secara matematis, bisa dinyatakan seperti berikut. Sinus α memiliki kebalikan yang disebut cosecan α. Secara matematis, cosecan α dinyatakan sebagai berikut. Perbandingan Trigonometri Cosinus Cosinus α atau biasa ditulis cos α merupakan hasil perbandingan antara sisi mendatar atau samping sudut α BC dan sisi miring AC. Secara matematis, dinyatakan sebagai berikut. Sama seperti sinus α, cosinus α juga memiliki kebalikan yang disebut secan α atau biasa disingkat sec α. Secara matematis, sec α dinyatakan sebagai berikut. Perbandingan Trigonometri Tangen Tangen α atau biasa ditulis tan α merupakan hasil perbandingan antara sisi depan sudut α AB dan sisi samping sudut α BC. Secara matematis, dinyatakan sebagai berikut. Tan α juga memiliki kebalikan yang disebut cotangen α atau biasa disingkat cot α. Secara matematis, cot α dinyatakan sebagai berikut. Perbandingan Trigonometri Sudut Istimewa Saat belajar trigonometri, kamu akan dikenalkan dengan istilah sudut istimewa. Sudut istimewa adalah sudut yang nilai trigonometrinya mudah untuk diingat dan dihafalkan, sehingga kamu tidak membutuhkan alat bantu seperti kalkulator. Adapun yang termasuk sudut istimewa adalah 0o, 30o, 45o, 60o, dan 90o. Lantas, berapa nilai perbandingan untuk sudut-sudut istimewa tersebut? Nilai Perbandingan Trigonometri untuk Sudut 0O Untuk mengetahui nilai perbandingan trigonometri sudut 0o, perhatikan gambar segitiga berikut. Agar sudut α = 0, langkah apa yang harus kamu lakukan? Yak, betul. Kamu harus menggeser sisi miring segitiga ke bawah sedemikian sehingga panjang sisi tegak AB semakin kecil. Langkah itu bisa kamu lanjutkan sampai sisi AC berimpit dengan sisi BC seperti berikut. Dari gambar di atas, AC berimpit dengan BC, sehingga AB = 0 dan panjang AC = BC. Dengan demikian, nilai perbandingan sudutnya adalah sebagai berikut. Nilai perbandingan sinus Nilai perbandingan cosinus Nilai perbandingan tangen Nilai Perbandingan Trigonometri untuk Sudut 30O dan 60O Sudut 30o dan 60o pada segitiga siku-siku bisa dibentuk melalui segitiga sama sisi yang dibagi dua tepat di bagian tengahnya sehingga dihasilkan dua segitiga siku-siku yang kongruen. Perhatikan gambar berikut. Sisi BD bisa dianggap sebagai sisi tegak segitiga siku-sikunya. Panjang masing-masing sisi dimisalkan sebagai 2p. Adapun panjang BD bisa kamu tentukan dengan teorema Pythagoras seperti berikut. Dengan demikian, diperoleh nilai perbandingan trigonometri sebagai berikut. Nilai sinus 30o dan 60o Nilai cosinus 30o dan 60o Nilai tangen 30o dan 60o Nilai Perbandingan Trigonometri untuk Sudut 45O Jika suatu persegi dibagi menjadi dua bagian tepat di bagian diagonalnya, pasti akan terbentuk dua segitiga siku-siku sama kaki yang kongruen. Besarnya sudut di kedua kaki segitiga adalah sama, yaitu 45o. Perhatikan gambar berikut. Panjang diagonalnya AD bisa ditentukan dengan teorema Pythagoras dan diperoleh AC = p2. Dengan demikian diperoleh nilai perbandingan trigonometri sebagai berikut. Nilai Perbandingan Trigonometri untuk Sudut 90O Sebelum sampai pada perbandingannya, perhatikan kembali gambar segitiga berikut. Dari gambar di atas, sudut α sudah pasti kurang dari 90o α<90o. Lalu, bagaimana cara membuat agar sudut α = 90o? Jika sisi miring diperpendek ke arah kiri, hingga sisi AC berimpit dengan AB, maka akan terbentuk sudut 90o. Perhatikan gambar berikut. Gambar di atas menunjukkan bahwa sisi AC berimpit dengan sisi AB, sehingga AB = AC dan BC = 0. Dengan demikian, diperoleh Nilai perbandingan sinus Nilai perbandingan cosinus Nilai perbandingan tangen Sekarang, kamu sudah tahu kan asal nilai perbandingan trigonometri untuk sudut istimewa? Contoh Soal Perbandingan Trigonometri Untuk mengasah kemampuanmu, yuk simak contoh soal berikut ini. Contoh Soal 1 Deni memiliki sebuah tongkat yang panjangnya 1,5 √2 m. Ia menyandarkan tongkat tersebut di tembok sedemikian sehingga ujung bawah tongkatnya membentuk sudut 45o terhadap lantai. Berapakah jarak antara ujung bawah tongkat dan tembok? Pembahasan Mula-mula, gambarkan terlebih dahulu posisi tongkat Deni. Jarak antara ujung bawah tongkat dan tembok dimisalkan sebagai x. Tugas Quipperian adalah mencari nilai x itu. Caranya dengan menggunakan perbandingan trigonometri cosinus α. Mengapa harus cosinus? Karena sisi yang diketahui adalah sisi miring, sementara yang ditanyakan adalah sisi disamping sudut. Dengan demikian Jadi, jarak antara ujung bawah tongkat dan tembok adalah 1,5 m. Contoh Soal 2 Jika nilai sin α = 4/5, berapakah nilai cos α ? Pembahasan Di soal diketahui nilai sin α = 4/5. Jika digambarkan dalam bentuk segitiga siku-siku menjadi Sinus α merupakan perbandingan sisi di depan sudut dan sisi miring. Sementara cosinus α merupakan perbandingan sisi samping sudut dan sisi miring. Oleh karena panjang sisi samping sudut belum diketahui, maka langkah selanjutnya kamu harus mencari panjang sisi tersebut. Gunakan teorema Pythagoras seperti berikut. Dengan demikian, nilai cosinus α adalah sebagai berikut. Jadi, nilai cos α = 3/5 Contoh Soal 3 Diketahui segitiga siku-siku PQR berikut ini. Jika panjang QR = 15 cm, tentukan luas segitiga PQR tersebut! Pembahasan Mula-mula, tentukan dahulu panjang sisi PQ sebagai tinggi segitiga. Sisi PQ merupakan sisi depan sudut, sementara sisi QR merupakan sisi samping sudut. Oleh sebab itu, kamu bisa menggunakan perbandingan tan30o seperti berikut. Selanjutnya, tentukan luas segitiga PQR dengan rumus berikut. Jadi, luas segitiga siku-siku PQR tersebut adalah 65 cm2. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!

mencari sisi segitiga dengan sudut